Hollow porous carbon nanospheres containing polar cobalt sulfide (Co₉S₈) nanocrystals as electrocatalytic interlayers for the reutilization of polysulfide in lithium–sulfur batteries

Su Hyun Yang a,1, Jang Min Choi b,1, Rakesh Saroha b, Sung Woo Cho b, Yun Chan Kang a,*, Jung Sang Cho b,*

a Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
b Department of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Republic of Korea

HIGHLIGHTS
- Hollow porous carbon nanospheres (HPCNSs) are prepared.
- Comprising well-embedded metallic and polar cobalt sulfide (Co₉S₈) nanocrystals.
- Co₉S₈ nanocrystals act as chemisorption sites for efficient anchoring of polysulfide.
- Li–S cell with Co₉S₈@HPCNS-coated separator exhibits stable performance.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Hollow carbon nanosphere
Metal sulfide nanocrystal
Polysulfide capturing
Functional interlayer
Lithium–sulfur battery

ABSTRACT

Hypothesis: The introduction of functional interlayers for efficient anchoring of lithium polysulfides has received significant attention worldwide.

Experiments: A facile wet-chemical method was adopted to obtain hollow porous carbon nanospheres (HPCNSs) impregnated with metallic and polar cobalt sulfide (Co₉S₈) nanocrystals (abbreviated as “Co₉S₈@HPCNS”). The prepared nanocrystals were employed as electrocatalytic interlayers via separator coating for the efficient capture and reutilization of polysulfide species in Li-S batteries. The HPCNSs were synthesized via the polymerization method followed by carbonization and template removal. The Co₉S₈ nanocrystals were impregnated inside the HPCNSs, followed by heat treatment in a reducing atmosphere.

Findings: The porous structure of the CNS enables the efficient percolation of the electrolyte, in addition to accommodating unwanted volume fluctuations during redox processes. Furthermore, the metallic Co₉S₈ nanocrystals improve the electronic conductivity and enhance the polarity of the CNS towards the polysulfide.

Abbreviations: Co₉S₈, cobalt sulfide; CNSs, carbon nanosphere; Li–S, lithium–sulfur; TEOS, tetraethyl orthosilicate; TEM, transmission electron microscopy; XRD, X-ray diffraction; TGA, thermogravimetric analysis; EIS, electrochemical impedance spectroscopy; HPCNs, hollow porous carbon nanospheres; F-CNSs, filled carbon nanospheres; LSBs, lithium sulfur batteries; SEM, scanning electron microscopy; HR-TEM, high resolution TEM; BET, Brunauer–Emmett–Teller; XPS, X-ray photoelectron spectroscopy.

* Corresponding authors.
E-mail addresses: yckang@korea.ac.kr (Y.C. Kang), jscho@cbnu.ac.kr (J.S. Cho).

https://doi.org/10.1016/j.jcis.2023.04.083
Received 11 January 2023; Received in revised form 12 April 2023; Accepted 19 April 2023
Available online 28 April 2023
0021-9797/© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Li-S batteries have been considered as a suitable alternative to the currently available Li-ion batteries owing to their high theoretical discharge capacity (1675 mA h g\(^{-1}\)), nominal average discharge voltage (2.1 V vs. Li\(^+\)/Li\(^-\)), and low production cost because of the widespread availability of elemental S [1–6]. However, owing to the insulating nature of S and its end discharge product (lithium sulfide; Li\(_2\)S), polysulfide (Li\(_2\)S\(_x\); \(x = 8, 6, \) and 4) shuttling, volume fluctuations (due to the density difference between S and Li\(_2\)S), and Li instability, the practical application of lithium-sulfur batteries (LSBs) is hindered [7–12]. These issues result in low active-material utilization, poor reaction kinetics, inferior rate capabilities, unstable cycling performances, low Coulombic efficiencies, and poor anode safety [13–16].

To address the aforementioned drawbacks, the interlayer strategy has attracted worldwide attention in the last few years to suppress the polysulfide crossover and improve the overall electrochemical performance. The interlayer is commonly fabricated via a commercial separator coating or as a freestanding disk. To qualify as an interlayer material, the nanostructure must possess a few intrinsic characteristics, such as high porosity, high conductivity, and the presence of polar materials [17]. The porosity facilitates the inhibition of electrode pulverization caused by undesired volume variations in S and Li\(_2\)S during the redox processes. In addition, the porous nanostructure ensures an adequate diffusion of charged species along with efficient electrolyte percolation [18]. To introduce porosity inside the nanostructures, various techniques have been developed, which mainly include generating either template-derived or template-free pores [19]. In general, template-derived pores are obtained using either a hard or a soft template. The hard template method involves the removal of cavity-filling precursors after synthesis, whereas the soft template method facilitates more subtle interactions between the template and framework source, thereby offering good control of the porosity [20].

The presence of a polar material is another desired characteristic for ensuring the efficient capture and electrocatalytic conversion of the polysulfide species, resulting in high active material utilization. Numerous materials have been previously evaluated as efficient interlayer materials, including conductive carbon skeletons [21–23], metal oxides [24,25], metal nitrides [26], and metal selenides [27,28], and many more [29–32]. In particular, transition metal sulfides have been extensively explored owing to their excellent polysulfide anchoring capabilities [27]. In addition, compared with those of metal oxides, the metallic characteristics of metal sulfides facilitate fast electron transfer thus allowing kinetically favored electrocatalytic conversion of polysulfides [33].

Based on the above discussion, we herein synthesized hollow porous carbon nanospheres (HPCNs) comprising well-embedded metallic and polar Co\(_{96}\)S\(_8\) nanocrystals (abbreviated as Co\(_{96}\)S\(_8\)/HPCNS) and utilized them as a multifunctional interlayer in Li-S cells by pairing with elemental S electrodes to improve the electrochemical performance. Initially, the HPCNS sample was prepared via facile polymerization followed by carbonization and template removal. Subsequently, the Co\(_{96}\)S\(_8\) nanocrystals were impregnated inside the HPCNS. The as-prepared Co\(_{96}\)S\(_8\)/HPCNS sample was then used as a multifunctional and electrocatalytic interlayer for highly stable LSBs. The hollow structure or cavity was derived via template removal (silica (SiO\(_2\)) in the present case) strategy. The hollow structure facilitates efficient electrolyte penetration and channelizes undesired volume variations during the redox processes. Similarly, metallic and polar Co\(_{96}\)S\(_8\) nanocrystals act as chemisorption sites for effective polysulfide anchoring and catalytic conversion. To the best of our knowledge, the use of the above-mentioned nanostructure with commendable structural merits such as inner hollow space and a large surface area along with well-grafted metallic metal sulfide nanocrystals as a polysulfide barrier in Li-S cells has not been reported thus far.

Owing to the structural advantages, the Li-S cells employing Co\(_{96}\)S\(_8\)/HPCNS-coated separator and regular S electrode displayed an improved electrochemical performance such as sufficient rate capability and extended cycling properties at various current rates, owing to the improved active material utilization.

2. Materials and methods

2.1. Chemicals

All the chemicals used in the synthesis were of analytical grade viz. tetraethyl orthosilicate (TEOS, 95.0%, SAMCHUN), ammonia water (28.0–30.0%, SAMCHUN), resorcilon (98.0%, SAMCHUN), formaldehyde solution (36.0–38.0%, JUNSEI), sodium hydroxide (NaOH, 97.0%, JUNSEI), thiourea (98%, JUNSEI) and Co(NO\(_3\))\(_2\)-6H\(_2\)O (97%, SAMCHUN). The impregnation solution was prepared using high-purity ethanol (99.9%, SAMCHUN).

2.2. Synthesis of Co\(_{96}\)S\(_8\)/HPCNS

The hollow porous carbon nanospheres with well-grafted metal sulfide nanocrystals (denoted as Co\(_{96}\)S\(_8\)/HPCNS) samples were prepared via facile impregnation method followed by heat treatment. Initially, HPCNS was synthesized using a wet chemical method. Briefly, 3.46 mL of TEOS (Tetraethyl orthosilicate) and 3.5 mL of ammonia water were added to a mixture containing 70 mL of high-purity ethanol and 10 mL of deionized (DI) water using stirring. Subsequently, 0.4 g of resorcilon and 0.56 mL of formaldehyde solution were added to the above-formed silica precursor solution with vigorous stirring for 24 h. The precipitates were then centrifuged with ethanol and DI water. To prepare the SiO\(_2\)/SiO\(_2\)/C nanospheres, the precipitates were heat treated at 700 °C in an Ar gas atmosphere for 5 h at a ramp rate of 2 °C min\(^{-1}\). Subsequently, the SiO\(_2\)/SiO\(_2\)/C nanospheres were etched using a 4 M NaOH solution through a hydrothermal process at 130 °C for 6 h. After cooling to ambient temperature, the contents were washed with a mixture of DI water and ethanol and dried in a vacuum oven. The dried sample (0.02 g) was impregnated in a high-purity ethanol solution containing Co(NO\(_3\))\(_2\)-6H\(_2\)O (0.137 mmol) and thiourea (0.415 mmol). Subsequently, the impregnated HPCNS powders were heat-treated in a tube furnace under H\(_2\)/Ar (10/90 wt%) gas atmosphere at 350 °C for 6 h using a ramping rate of 5 °C min\(^{-1}\) to form the Co\(_{96}\)S\(_8\)/HPCNS powder. For comparison, filled carbon nanospheres (F-CNSs) were also synthesized using the same process except for the addition of TEOS, which is a pore-forming generator. However, to obtain a size comparable to that of HPCNS, the amount of reagents used was controlled as follows: 3.5 mL of ammonia water, 0.2 g of resorcilon, and 0.28 mL of formaldehyde solution. Subsequently, these reagents were added to a solution containing 70 mL of high-purity ethanol and 10 mL of DI water. Additionally, pristine Co\(_{96}\)S\(_8\) sample was also prepared as a control by simply mixing fixed proportions of cobalt nitrate and thiourea followed by identical heat-treatment conditions.
2.3. Characterizations of materials

The morphologies of Co$_9$S$_8$@HPCNS, HPCNS, and F-CNS were confirmed using microscopic characterization techniques such as scanning electron microscopy (SEM, VEGA3 SBH) and field-emission transmission electron microscopy (FE-TEM, JEM-2100F). X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was conducted to confirm the chemical bonding of Co$_9$S$_8$@HPCNS at Sunchun National University Center for Research Facilities. The crystal phases of the prepared samples were characterized by powder X-ray diffraction (XRD, X’Pert PRO) with Cu-K$_\alpha$ radiation (λ = 1.5418 Å) at the Korea Basic Science Institute. The surface areas and pore sizes were investigated using the Brunauer–Emmett–Teller (BET) method using pure N$_2$ as the adsorbate gas. Thermogravimetric analysis (TGA) was performed using a Pyris 1 TGA (Perkin Elmer) in the 30–700 °C range at a ramp rate of 10 °C min$^{-1}$ in air to confirm the carbon content of the composites. Raman spectroscopy (Jobin Yvon LabRamHR800, excited by a 632.8-nm He/Ne laser) was performed for analyzing the structure of the carbon present in the Co$_9$S$_8$@HPCNS sample.

2.4. Cell assembly and electrochemical characterization

The multifunctional interlayers were used as a typical slurry coating technique. Briefly, the as-prepared Co$_9$S$_8$@HPCNS sample (70 wt%), super-P (20 wt%), and polyvinylidene fluoride (PVDF; 10 wt%) binder were dispersed in an optimal amount of N-methyl-2-pyrrolidone (NMP) solvent. The uniform slurry was coated onto a commercial polypropylene separator and dried subsequently at 60 °C overnight. Round discs (ϕ = 19 mm) were punched with an average loading of 0.5 mg cm$^{-2}$. Likewise, regular S electrodes were also prepared using an identical slurry process where elemental S, super-P, and PVDF were mixed in 7:2:1 mass ratio. The active S loading was fixed at 1.6 mg cm$^{-2}$. The electrolyte used was 1.0 M lithium bis(trifluoromethanesulfonyl)imide in a voltage range of 10 V. In each process except for the addition of a pore-forming agent (TEOS), the as-prepared Co$_9$S$_8$@HPCNS-coated separator as the function interlayer. The electrolyte used was 1.0 M lithium bis(trifluoromethanesulfonyl)imide in 1,3-dioxolane (DOL) and 1,2-dimethoxethane (DME) (1:1, v/v) with 0.5 M lithium nitrate (LiNO$_3$) as an additive. The electrolyte volume was fixed at 50 μL. The charge–discharge voltage profiles were observed at various current rates (C-rates) ranging from 0.1 to 2.0 C (1 C was equated to 1675 mA h g$^{-1}$). The cyclic performance was also evaluated at 0.5 C and 1.0 C rates. The cyclic voltammetry (CV) curves were obtained at various scan rates from 0.05 to 0.5 mV s$^{-1}$ in the voltage window of 1.7–2.8 V. The charge transfer characteristics were observed by Nyquist plots using an electrochemical impedance analyzer (ZIVE SP2; WonAtech) coupled with an AC pulse of amplitude 5 mV in the frequency range of 10 mHz to 1 MHz. All the electrochemical tests were performed at ambient conditions using a WBCS3000 (WonAtech) battery cycler.

2.5. Visual polysulfide adsorption and electrocatalytic conversion tests

Visual tests for demonstrating the polysulfide anchoring by the as-prepared samples were also performed. Briefly, elemental sulfur powder (S, Sigma-Aldrich, 99.98%) and Li$_2$S (≥99%, Sigma-Aldrich) were dispersed (5:1 M ratio) in DOL/DME (1:1, v/v) to produce a dark brown Li$_2$S$_8$ solution. Afterward, 1.0 mM Li$_2$S$_8$ solution was prepared in DOL/DME solvent and dropped into three glass vials having as-prepared nanospheres (3.0 mg each). A standard polysulfide solution was also prepared for comparison. Furthermore, symmetrical cells were made to determine the catalytic effect of the as-prepared nanospheres by using the prepared polysulfide solution. The counter and working electrodes (obtained using the slurry method) were kept identical and separated using a Celgard separator. CV plots were obtained for assembled symmetrical cells at a voltage scan rate of 3.0 mV s$^{-1}$ in a voltage range of −1.0 to 1.0 V.

3. Results and discussion

3.1. Physical characterization results

The detailed formation mechanism of the Co$_9$S$_8$@HPCNS sample is illustrated in Scheme 1. First, carbon nanospheres with a well-formed cavity (HPCNSs) were obtained via a simple wet-chemical route involving facile polymerization followed by carbonization and template removal. The TEOS acts as a source for the formation of SiO$_2$-primary particle as well as the SiO$_2$-core particle whereas the formaldehyde-resorcinol solution undergoes a polymerization process and finally gets condensed onto the SiO$_2$-core particles. Additionally, the formaldehyde-resorcinol solution serves as a source of carbon precursor. The precipitates were centrifuged, collected, and washed repeatedly with ethanol and DI water. The carbonization process at 700 °C resulted in the conversion of formaldehyde-resorcinol matrix to an amorphous carbon nanosphere containing well-embedded TEOS-derived SiO$_2$-primary as well as the SiO$_2$-core particles (SiO$_2$/SiO$_2$-C). The HPCNSs were obtained from SiO$_2$/SiO$_2$-C nanospheres via an etching process using 4 M NaOH solution and act as a reservoir for cobalt sulfide nanocrystals (Scheme 1–9). The etching removed both the SiO$_2$-primary and SiO$_2$-core particles, thereby forming mesopores and a central void or hollow inner space, respectively. A homogeneous solution containing cobalt nitrate and thiourea in ethyl alcohol was fully impregnated into the HPCNSs via a drop-and-dry method (Scheme 1–2). During this process, the solution can easily penetrate the central void through the well-developed mesopores of the HPCNSs with the aid of capillary action. Subsequently, the impregnated HPCNSs were heat treated in the H$_2$/Ar gas atmosphere at 350 °C for 6 h. During this process, the cobalt nitrate and thiourea reagents were converted into Co$_9$S$_8$ nanoparticles by reacting with H$_2$ gas and aggregated into an inner void via Ostwald ripening, resulting in the formation of Co$_9$S$_8$@HPCNS (Scheme 1–2) [34].

The material characteristics of the composites obtained at each step were investigated using various analytical techniques. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images in Fig. S1a and b show that HPCNSs exhibit a uniform size distribution with an average diameter of 280 nm. The presence of multiple mesopores (Fig. S1b) and a large inner void with a carbon shell (thickness of 12 nm) are also observed. The mesopores serve as storage passages for the metal precursor and thiourea. After impregnation, the morphology of the HPCNSs infiltrated with cobalt nitrate and thiourea reagents changes negligibly and no aggregation is observed, suggesting that the reagents have infiltrated the HPCNS template (Fig. S2). Furthermore, the overall morphologies of Co$_9$S$_8$@HPCNSs obtained after heat treatment do not change significantly (Fig. S3). However, the TEM images indicate that the Co$_9$S$_8$ nanoparticles (black region) aggregate inside HPCNSs (Fig. 1a and b). In addition, mesoporous voids (highlighted by circles; Fig. 1b) are also observed owing to the etching of SiO$_2$-primary particles. The high-resolution TEM (HR-TEM) image in Fig. 1c shows a clear lattice spacing of 0.17 nm corresponding to the (4 4 0) crystal plane of Co$_9$S$_8$ nanoparticles that are well-grafted into the carbon matrix. The selected area electron diffraction (SAED) pattern (Fig. 1d) also reveals well-resolved diffraction ring patterns corresponding to the (3 1 1), (4 0 0), (5 1 1), (4 4 0), and (7 3 1) planes of the Co$_9$S$_8$ phase and is consistent with the corresponding XRD results presented in Fig. 1e. The distribution of Co and S shows that cobalt sulfide exists only in the interior space of the HPCNSs (Fig. 1f). To validate the structural advantages of Co$_9$S$_8$@HPCNS, F-CNSs were also prepared using the same process except for the addition of a pore-forming agent (TEOS). The as-prepared F-CNS sample exhibits a filled structure with a uniform size distribution (average diameter of 250 nm), as shown in the SEM image (Fig. S4a). The TEM image in Fig. S4b further validates the SEM results, indicating filled-type morphology primarily due to the absence of mesoporous voids formed from etched SiO$_2$-primary particles. Furthermore, SEM results of the pristine Co$_9$S$_8$ sample in Fig. S5a reveal particle-type
The chemical composition of the Co$_9$S$_8$@HPCNS was determined via X-ray photoelectron spectroscopy (XPS; Fig. 2). The survey spectrum of Co$_9$S$_8$@HPCNS indicates the presence of Co, S, C, and O, which agrees well with the elemental mapping results. The presence of O was attributed to surface oxidation during sample preparation. The Co 2p spectrum in Fig. 2b shows several peaks corresponding to Co$^{2+}$ bonding (778.5 and 794.3 eV) and Co$^{3+}$ bonding (781.2 and 797.4 eV), along with satellite peaks (denoted as Sat.), all of which are associated with Co$_9$S$_8$ nanocrystals and partially oxidized cobalt sulfides, such as cobalt sulfate [35–39]. The S 2p spectrum in Fig. 2c shows five peaks at 161.4, 162.6, 163.9, 165.1, and 168.6 eV. The two peaks at 161.4 and 162.6 eV match well with the binding energies of S 2p$_{3/2}$ and S 2p$_{1/2}$, respectively [40,41]. The presence of C=S (163.9 eV) and C≡S (165.1 eV) is attributed to the interfaces between Co$_9$S$_8$ and the carbon spheres [40]. The peak at 168.6 eV is attributed to the S≡O bond of a partially oxidized sulfur species on the surface of Co$_9$S$_8$@HPCNS [42]. The deconvoluted C 1s spectrum (Fig. 2d) exhibits five well-fitted peaks at 284.5, 285.0, 285.8, and 288.8 eV, which correspond to the C=C sp2, C=S, and C≡O bonds, respectively [43–46]. The appearance of the highest-intensity peak corresponding to the C=C bond firmly indicates the existence of carbonaceous species in the prepared samples.

To confirm the thermal behavior and quantify the carbon content in Co$_9$S$_8$@HPCNS, thermogravimetric analysis (TGA) was performed. In Fig. 3a, the initial weight loss upon increasing the temperature from 100 to 150 °C is attributed to the evaporation of adsorbed water in the structure. The slight weight increase upon increasing the temperature from 200 to 370 °C is related to the partial oxidation of cobalt sulfide to cobalt sulfate [47]. Furthermore, the weight loss above 400–460 °C is associated with carbon combustion and the formation of cobalt oxide. Based on the TGA data, the calculated carbon content in Co$_9$S$_8$@HPCNS was 54.5%. To further confirm the carbon properties, Raman spectroscopy was conducted, and the results are shown in Fig. 3b. The two broad peaks positioned at approximately 1342 and 1591 cm$^{-1}$ for Co$_9$S$_8$@HPCNS correspond to the D- and G-bands of carbonaceous materials, respectively [48]. The D and G peak intensity ratio (I_D/I_G) of 0.86 indicates that the HPCNSs possess few defects [11]. The Brunauer–Emmett–Teller (BET) analysis shows that the specific surface areas of Co$_9$S$_8$@HPCNS, HPCNS, and F-CNS are 291.7, 538.8, and 307.8 m2 g$^{-1}$, respectively (Fig. 3c). In contrast to HPCNS, the decreased surface area and pore volume of the Co$_9$S$_8$@HPCNS composite demonstrate that metal sulfides are well embedded in HPCNS. The large specific surface area of F-CNS is attributed to the formation of micropores when organic matter is converted into carbon during the heat treatment [49]. The Barrett–Joyner–Halenda (BJH) pore size distributions of Co$_9$S$_8$@HPCNS and HPCNS (Fig. 3d) exhibit a narrow pore size in the range of 4–6 nm, suggesting the presence of mesopores. These results match well with the results presented in Fig. 1 and Fig. S1. The mesopores facilitated electrolyte percolation and channeled volume perturbations during the redox process, thereby improving the overall electrochemical performance.
3.2. Electrochemical results

Before electrochemical testing, the physical attributes of the coated separators were examined. A digital image of the coated separator after drying at 60 °C (Fig. S6a) indicates a uniform crack-free coating. Circular disks (ϕ = 19 mm) were punched from the coated separator as multifunctional interlayers (Fig. S6b). The thicknesses of the various coated separator disks and the pristine separator were measured using a digital meter (Fig. S6c–f), revealing a coating thickness of 15 μm. The folding and twisting of the coated separator disks shown in Fig. S6g firmly indicate the high mechanical integrity of the interlayer. The SEM micrograph of the F-CNS-coated separator shown in Fig. S7a shows porous openings that facilitate Li-ion diffusion. The SEM micrograph of the Co₉S₈@HPCNS-coated separator shown in Fig. S7b indicates a uniform coating of the Co₉S₈@HPCNS sample along with super-P. In addition, the cross-sectional image in Fig. S7c suggests a uniform coating thickness of 15 μm, which matches the results described in Fig. S6c–e.

The results of the electrochemical tests performed on various Li-S cells using coated separators are shown in Fig. 4. The cyclic voltammetry (CV) curves obtained at a voltage ramp rate of 0.1 mV s⁻¹ in the voltage range of 1.7–2.8 V are shown in Fig. 4a. The Co₉S₈@HPCNS-coated separator exhibits sharp and well-resolved redox peaks compared to the HPCNS-coated and F-CNS-coated separators. The reduction peak pair at 2.29/1.99 V observed for the Co₉S₈@HPCNS-coated separator indicates a reduction of higher-order polysulfide species to middle- and lower-order polysulfide molecules to finally form Li₂S. Similarly, the appearance of closely spaced peaks at 2.39 and 2.43 V signifies the oxidation of...
Li₂S to elemental S via middle- and higher-order polysulfide species. The cells featuring HPCNS-coated and F-CNS-coated separators also displayed typical redox processes involving only S and Li₂S. However, the low redox current intensities of the HPCNS-coated separator and the lowest value observed for the F-CNS-coated separator indicated poor redox kinetics inside the cell. This observation was significantly pronounced when the polarization effect was considered. For instance, the Co₉S₈@HPCNS-coated separator exhibited the lowest polarization potential (ΔV = 130 mV) compared to that of the HPCNS-coated (ΔV = 180 mV) and F-CNS-coated separators (ΔV = 230 mV). Furthermore, the initial five CV cycles for all separator arrangements are shown in Fig. S8a–c, indicating almost overlapping profiles. However, the disparity in the redox peak intensities suggests different discharge capacities. The initial charge–discharge voltage profile is plotted to verify the CV observations, as shown in Fig. 4b. The cells utilizing the Co₉S₈@HPCNS-coated and HPCNS-coated separators display well-distinguished voltage plateaus, which are well synchronized with the CV results. Additionally, the long voltage plateau suggests kinetically favored electrochemical processes. In contrast, the cell featuring the F-CNS-coated separator exhibits a lower voltage plateau. Correspondingly,
the cells utilizing Co$_9$S$_8$@HPCNS-coated, HPCNS-coated, and F-CNS-coated separator exhibit a discharge capacity of 1180, 1056, and 668 mA h g$^{-1}$, respectively at 0.1 C, which are 70.4%, 63.0%, and 39.8% of the theoretical value. The high-capacity utilization for Co$_9$S$_8$@HPCNS-coated separator could be attributed to the efficient capturing of the polysulfide species by the metallic and polar Co$_9$S$_8$ nanocrystals compared to nonpolar carbonaceous species in the HPCNS-coated and F-CNS-coated separators. Moreover, the hollow and porous spaces efficiently accommodated undesired volume variations during redox reactions thus inhibiting electrode pulverization. Therefore, the CV and initial charge-discharge voltage profiles confirm that the structural advantages of Co$_9$S$_8$@HPCNS resulted in an enhanced electrochemical performance.

Rate capability tests were also conducted on Li-S cells with various coated separator systems (Fig. 4c). The cell with the Co$_9$S$_8$@HPCNS-coated separator exhibited higher discharge capacities at each current rate than those of the HPCNS-coated and F-CNS-coated separators. For instance, the Co$_9$S$_8$@HPCNS-coated separator exhibited initial discharge capacities of 1180, 863, 794, 704, 605, 551, and 335 mA h g$^{-1}$ at current rates of 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, and 2.0 C, respectively. In contrast, the HPCNS-coated and F-CNS-coated separators displayed initial discharge capacities of 1056/668, 884/721, 769/664, 559/602, 394/494, 308/389, and 199/241 mA h g$^{-1}$ at similar current rates of 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, and 2.0 C, respectively. The similar discharge capacities of the Co$_9$S$_8$@HPCNS-coated and HPCNS-coated separators at low current rates were mainly attributed to the highly porous structure of the HPCNS sample that resulted in the adsorption of polysulfides to some extent. However, at high current rates, the absence of metallic and
polar species in the HPCNS resulted in poor rate capabilities. This observation is more apparent when considering capacity utilization at a high current rate. For example, the Co$_9$S$_8$@HPCNS-coated separator exhibited a capacity utilization of 20% at 2.0 C compared to 12% for the HPCNS-coated separator. This is because of the existence of several chemisorption sites in the form of polar and metallic Co$_9$S$_8$ nanocrystals, which ensure the efficient anchoring and electrocatalytic conversion of polysulfide species, thereby enhancing active material utilization. The slightly better rate performance of the Li-S cell featuring F-CNS-coated separator at high current rates compared to the HPCNS-coated separator was mainly because of the presence of micropores which were formed due to carbon shrinkage. The micropores improved active material reutilization, as reported previously [23]. The charge–discharge voltage profiles at various current rates shown in Fig. S9a–c firmly validates the above-mentioned reasoning with distinct voltage plateaus for the Co$_9$S$_8$@HPCNS-coated separator even at high current rates. Additionally, when the current direction was reversed, the cell featuring the Co$_9$S$_8$@HPCNS-coated separator fairly recovered the discharge capacities at 0.1 C, thereby confirming the structural advantages of the prepared sample.

The cycling performance was evaluated to further verify the structural merits at low and high current rates, and the results are shown in Fig. 4d and e. The cell featuring the Co$_9$S$_8$@HPCNS-coated separator exhibited an initial discharge capacity of 879 mA h g$^{-1}$ at 0.1 C, which increased to 1081 mA h g$^{-1}$ at the 3rd cycle mainly due to the activation process. After 250 continuous charge–discharge cycles, the cell
demonstrated a highly stable cycling performance, as evidenced by a discharge capacity of 656 mA h g$^{-1}$ (75% capacity retention). This resulted in an average capacity loss of only 0.89 mA h g$^{-1}$ per cycle. In contrast, the cell featuring the HPCNS-coated separator displayed a high initial discharge capacity of 1129 mA h g$^{-1}$ owing to its large surface area. However, on further cycling, the capacity decreases monotonically and gets stabilized at 559 mA h g$^{-1}$ (50% capacity retention) at the end of 250th cycle with a high-capacity loss of 2.28 mA h g$^{-1}$ per cycle. The high-capacity retention and low-capacity loss of the Co$_9$S$_8$@HPCNS-coated separator are because of the presence of polar and metallic Co$_9$S$_8$ nanocrystals that ensure efficient polysulfide capture and facilitate their electrocatalytic conversion. In contrast, the nonpolar characteristics of the carbonaceous species in HPCNS resulted in poor polysulfide cross-over suppression and, hence, continuous active material loss. Similar trends were observed for the F-CNS-coated separator, with rapidly fading capacity and low active material utilization. In addition, the high Coulombic efficiency of 100% observed for the Co$_9$S$_8$@HPCNS-coated separator at the end of 250 cycles indicated highly reversible electrochemical processes. Similarly, at a high current rate of 1.0 C (Fig. 4e), the cells featuring the Co$_9$S$_8$@HPCNS-coated separator exhibit better cycling performances than those containing the HPCNS-coated and F-CNS-coated separators. For instance, a discharge capacity of 395 mA h
g-1 (70% retention after the 7th cycle) was obtained after 300 cycles with an average capacity loss of 0.56 mAh g-1 per cycle. In contrast, the HPCNS-coated and F-CNS-coated separators displayed low discharge capacities of 251 and 277 mAh g-1, respectively, after an identical number of cycles. The prolonged cycling of the Co\textsubscript{S}@HPCNS-coated separator at 0.5 C (Fig. S10) agrees well with the aforementioned results. It should be noted that the average discharge capacity error associated with different cells was around ± 5 mAh g-1. The performance of electrocatalytic interlayers in the present work is comparable to the previously reported results on various interlayer materials, as shown in Table S1. The practical feasibility of the as-prepared Co\textsubscript{S}@HPCNS sample as a multifunctional interlayer was further verified using high-loading electrodes, as shown in Fig. S11a and b. The cell with an active loading of 2.0 mg cm-2 exhibited a highly stable cycling performance at 0.3 C with a final discharge capacity of 321 mA h g-1 after 1000 cycles (58% capacity retention measured from the 5th cycle and a capacity loss of only 0.22 mAh g-1 per cycle). When the mass loading was further improved to 3.2 mg cm-2 (S content = 57 wt%), the cell maintained its cycling stability for 300 cycles, with a final discharge capacity of 391 mA h g-1. However, the initial increase in the discharge capacity is mainly because of the activation of the active material, as previously reported [2]. These results prove that the structural advantages of the Co\textsubscript{S}@HPCNS sample facilitate kinetically favored redox processes with rapid electron transfer and smooth charge-diffusion characteristics. Furthermore, the poor rate capability and inferior cycling performance (at 1.0 C) of the pristine Co\textsubscript{S} sample in Fig. S12 again validate the structural merits of Co\textsubscript{S}@HPCNS sample.

To validate the charge-diffusion properties of all the assembled cells incorporating different separator configurations, the Li-ion diffusion coefficient (D\textsubscript{Li}) was determined using CV curves in a voltage range of 1.7–2.8 V at different scan rates of 0.05–0.5 mV s-1, and the results are presented in Fig. S5. The CV curves obtained at various scan rates exhibited standard Li–S redox peaks, suggesting that the electrochemical processes inside the cells were similar to those between elemental S and Li\textsubscript{2}S\textsubscript{8}. However, compared with that of other cells, the high current values presented in Fig. 5a, even at a high voltage ramp rate of 0.5 mV s-1, indicating rapid redox processes and the efficient diffusion of charge carriers. The well-known Randles–Svëvik equation was further applied to calculate the D\textsubscript{Li} values for each cell [8]:

\[I_p = (2.69 \times 10^5)n^{1.5}A^{1.5}F^{0.5}C_{Li}v^{0.5} \]

(1)

where I\textsubscript{p} represents the current values for various redox peak; n quantify the involved electrons in the redox reaction (n = 2); A is the electrode area (cm2); C\textsubscript{Li} is the concentration of Li-ion (mol L-1); and v is the voltage ramp rate (V s-1). The I\textsubscript{p} vs. v0.5 plots obtained for Li-S cells with the Co\textsubscript{S}@HPCNS-coated, HPCNS-coated, and F-CNS-coated separators are shown in Fig. 5b, d, and f, respectively, and the corresponding D\textsubscript{Li} values are listed in Table 1. The cell featuring the Co\textsubscript{S}@HPCNS-coated separator exhibited the highest D\textsubscript{Li} values, indicating excellent diffusion processes inside the cell compared to other assembled cells. The D\textsubscript{Li} values confirm that the synergistic effects of the polar Co\textsubscript{S} nanocrystals and the hollow nanostructure improved the overall electrochemical performance of Co\textsubscript{S}@HPCNS compared to that of the HPCNS.

The improved redox reaction processes inside the assembled Li-S cells were further confirmed by Nyquist plot assessment (Fig. 5g). In addition, the equivalent circuit model comprising all fitted impedance parameters for Li-S cells with various coated separators is presented in Fig. S13. The impedance was determined at an open-circuit potential for all Li-S cells at various cycles during cycling at 1.0 C. All Li-S fresh cells exhibited similar electrolyte resistance (R\textsubscript{E}) values, implying a stable separator-electrolyte-electrode interfacial boundary. Furthermore, the fresh Li-S cell with the HPCNS-coated separator exhibited the smallest charge transfer impedance (R\textsubscript{CT} = 32 Ω) because of the highly porous structure of the HPCNS sample compared with that of Co\textsubscript{S}@HPCNS (~45 Ω) and F-CNS (~41 Ω). However, after the 1st cycle, the Co\textsubscript{S}@HPCNS-coated separator exhibited the lowest total cell resistance (~12 Ω), compared with that of the HPCNS-coated (~21 Ω) and F-CNS-coated (~20 Ω) separators. Even after 300 cycles, the Li-S cell with the Co\textsubscript{S}@HPCNS-coated separator displayed the lowest total cell resistance value of 25 Ω compared to the HPCNS-coated (35 Ω) and F-CNS-coated (31 Ω) separators. Additionally, the appearance of two well-distinguished semicircles for the F-CNS-coated separator indicates inferior Li-ion diffusion compared to that of the others owing to the formation of nonconducting deposits of Li\textsubscript{2}S\textsubscript{8} or Li\textsubscript{2}S\textsubscript{10} as previously reported [50]. This observation is consistent with the cycling performance results of the Li-S cell pairing the F-CNS-coated separator, as indicated in Fig. 4. These results further advocate that the structural supremacy of the Co\textsubscript{S}@HPCNS-coated separator compared to that of the other analyzed separators ensures kinetically preferred redox reactions inside the cell and enhances the structural integrity of the sulfur electrode during extended cycling and efficient polysulfide anchoring.

To investigate the effect of the electrocatalytic anchoring of lithium polysulfide using the Co\textsubscript{S}@HPCNS-coated separator, CV curves were obtained via symmetrical cells with the as-prepared nanospheres as the counter and working electrodes, which were further penetrated with the polysulfide solution, as presented in Fig. 6. The initial CV profile for symmetrical cells is obtained at a voltage ramp rate of 3.0 mV s-1 with the voltage ranging from −1.0 to 1.0 V (Fig. 6a). The CV curves exhibit appreciable differences as the Co\textsubscript{S}@HPCNS symmetrical cell exhibits an effective electrocatalytic nature toward polysulfides, as evidenced by the intense current peaks. In contrast, the HPCNS symmetrical cell exhibits low electrocatalytic performance toward polysulfides, owing to the absence of active chemisorption sites in the prepared nanospheres.

Furthermore, the CV plots for four successive cycles shown in Fig. 6b and c display almost overlapping curves, suggesting effective catalytic anchoring at different scales. These interpretations are further confirmed by visual polysulfide adsorption experiments (Fig. 6d). The adsorption of lithium polysulfide was attributed to Co\textsubscript{S}@HPCNS, as evidenced by a continuous change in the color of the polysulfide solution from pale yellow (at T = 0) to almost clear (T = 2 h). The solution containing HPCNS also exhibited similar polysulfide adsorption characteristics, which could be attributed to the highly porous structure of the sample. Furthermore, the XPS profiles of interlayer materials were also analyzed after cycling for the S\textsubscript{2p} photoelectron signal, as shown in Fig. S14. The existence of a photoelectron peak at binding energy of 166.9 eV for the cycled Co\textsubscript{S}@HPCNS and HPCNS sample is designated to the thioles (–S\textsubscript{2}O\textsubscript{3})- groups, which is usually considered as an indication of the surface redox reaction between the polysulfide and polar species [51]. This phenomenon resulted in the effective mitigation of higher-order polysulfide migration by converting them to insoluble lower-order polysulfides. The sharp peak at 168.6 eV is related to the polythionite complexes which formed due to the reaction of elemental S with nucelophilic species such as HS- or SO\textsubscript{4}2- [51]. The high intensity of polythionate complex peak for cycled Co\textsubscript{S}@HPCNS compared to HPCNS simply indicates better polysulfide anchoring. The fitted peak at 169.9 eV is ascribed to the sulfate (–SO\textsubscript{4}2-) species that originated due to LiTFSI decomposition inside the cell, which is considered as a key source of Li\textsubscript{2}SO\textsubscript{4} species [52]. These findings confirm that the structural advantages of Co\textsubscript{S}@HPCNS result in the efficient capture and conversion of the polysulfide species, owing to the availability of metallic and polar

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak I (cm-1 s-1)</th>
<th>Peak II (cm-1 s-1)</th>
<th>Peak III (cm-1 s-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co\textsubscript{S}@HPCNS</td>
<td>2.82</td>
<td>4.60</td>
<td>11.0</td>
</tr>
<tr>
<td>HPCNS</td>
<td>1.45</td>
<td>3.39</td>
<td>8.47</td>
</tr>
<tr>
<td>F-CNS</td>
<td>0.46</td>
<td>0.42</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Avg. D\textsubscript{Li} (cm-1 s-1) × 104
Co$_9$S$_8$ nanocrystalline chemisorption sites (Fig. 6e).

To further validate the structural integrity of the Co$_9$S$_8$@HPCNS sample, the cells were carefully disassembled after 300 cycles at 1.0 C, and SEM micrographs of the coated separators were obtained, as shown in Fig. 6f–h. The SEM micrographs of the coated separator with Co$_9$S$_8$@HPCNS (Fig. 6f) show that the spherical morphology remains unchanged even after extended cycling, indicating the high structural robustness of the nanostructure. In addition, no polysulfide accumulation is observed, indicating the efficient electrocatalytic transformation of sulfur-like species. In contrast, the cells with the HPCNS-coated (Fig. 6g) and F-CNS-coated (Fig. 6h) separators show enormous polysulfide sediments, implying a weak catalytic transformation effect because of the lack of redox-active species and the nonporous nature of the carbonaceous species in the nanostructure.

Overall, the introduction of a multifunctional interlayer in the form of a Co$_9$S$_8$@HPCNS-coated separator placed on the cathode side resulted in enhanced electrochemical properties such as sufficient rate capabilities and prolonged cycling stabilities at various C rates. The porous nanostructure ensured rapid charge diffusion and improved electrolyte penetration, resulting in an improved cell performance. Additionally, the presence of metallic and polar Co$_9$S$_8$ nanocrystals facilitated the effective catalytic conversion of trapped polysulfide species, resulting in high sulfur utilization. Therefore, we anticipate that the synthesis strategy discussed herein will substantially enhance the current knowledge on the development of advanced nanostructures.

4. Conclusions

In summary, we analyzed the electrochemical performance of Li–S cells using a modified cell component as a coating separator. The coated separator consists of hollow porous carbon nanospheres (HPCNs) comprising well-embedded metallic and polar Co$_9$S$_8$ nanocrystals (abbreviated as Co$_9$S$_8$@HPCNS). Initially, the HPCNS sample was prepared via facile polymerization followed by carbonization and template removal. Subsequently, the Co$_9$S$_8$ nanocrystals were impregnated inside the HPCNS using a drop and dry method. The as-prepared Co$_9$S$_8$@HPCNS sample was then used as a multifunctional and electrocatalytic interlayer for highly stable LiS$_2$s. The porous nanostructure of the multifunctional barrier facilitated rapid charge diffusion and efficient electrolyte infiltration. In addition, the well-grafted metallic and polar cobalt sulfide (Co$_9$S$_8$) nanocrystals served as chemisorption sites for efficient polysulfide anchoring and prevented migration toward the anode via efficient catalytic reaction, thereby increasing sulfur utilization. The prepared Li–S cell with regular S electrode and Co$_9$S$_8$@HPCNS interlayer as a polysulfide barrier demonstrated an overall enhanced electrochemical property in comparison with the literature, such as good rate capability (335 mA h g$^{-1}$ at 2.0 C) and long-term stability (395 mA h g$^{-1}$ at 1.0 C rate after 300 cycles) [53–55]. Even with a high S loading (3.2 mg cm$^{-2}$) and S content (57 wt%), the cell featuring a Co$_9$S$_8$@HPCNS-coated separator exhibited significantly high electrochemical performance (391 mA h g$^{-1}$ after 300 cycles at a 0.3 C rate). Therefore, we anticipate that the physical and electrochemical results presented herein will provide crucial insights into the expansion of porous and conductive nanostructures as host or interlayer material for several energy storage purposes.

CRedit authorship contribution statement

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP) [grant numbers NRF-2021R1A4A2001687 and NRF-2021R1I1A3057700].

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcis.2023.04.083.

References
