Surface defect passivation of All-Inorganic CsPbI$_2$Br perovskites via fluorinated ionic liquid for efficient Outdoor/Indoor photovoltaics processed in ambient air

Jitendra Bahadur a, SungWon Cho b, Padmini Pandey a, Jun Ryu b, Saemon Yoon b, Dong-Gun Lee b, Jun Tae Song c,d, Jung Sang Cho e, Dong-Won Kang a,b,*

a Department of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
b Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea
c Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
d International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
e Department of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Republic of Korea

Full Length Article

1. Introduction

In the past decade, organic/inorganic metal halide-based perovskites have gained massive attention due to their ease of fabrication and outstanding optoelectronic properties such as strong optical absorption, high carrier mobility, low exciton binding energy, high defect tolerance, tunable optical bandgap, and long charge carrier diffusion length [1–3]. The certified power conversion efficiency (PCE) of PSCs has rapidly soared from initial 3.8% to the 25.73% [4,5], which is comparable to that of commercial polycrystalline silicon solar cells [6]. Despite remarkable progress in terms of PCE, conventional halide perovskite materials suffer from thermal instability owing to volatility of organic molecules (methylammonium (MA$^+$) and formamidinium (FA$^+$)) under high temperature processing, which impedes their future commercial applications [7]. To overcome this issue, substitution of volatile organic components in the halide perovskite materials with inorganic cesium...
cations (Cs+) is an effective strategy [3,8,9]. Recently, all-inorganic CsPbI$_3$ (X: I, Br, Cl, or mixture thereof) perovskite such as CsPbBr$_3$, CsPbBr$_2$, CsPbI$_2$Br, CsPbI$_3$Br$_2$ have been demonstrated as promising light harvesting materials due to excellent thermal stability as well as tunable optical band edge from 1.73 to 2.3 eV for development of stable PSCs [10–14]. Among these, mixed halide based inorganic CsPb$_2$Br$_3$ perovskite is the most promising candidate with its good intrinsic phase stability, desired tolerance factor (0.84), superior light absorption ability, and reasonable band gap (1.92 eV) for use as a top cell in the fabrication of tandem solar cells (TSCs) [13,15–18]. Nonetheless, PCE of CsPb$_2$Br$_3$ PSCs is still far from Shockley–Queisser (SQ) efficiency limit due to the presence of several defects on the surface and in the bulk of perovskite [19]. The deep level defects are considered as interfacial defects, causing perovskite decomposition and non-radiative recombination, whereas conventional surface defects are halide ion vacancies and uncoordinated lead ions [20,21]. In general, inorganic perovskite films are developed by solvent evaporation of the precursor solution, several defects on the surface or at the grain boundaries (GBs) during the crystallization process are easily formed [20,22,23]. These defects act as non-radiative recombination centers that induce the additional energy loss, and hence limits the device performance [20,23]. Therefore, performance of PSCs can be improved by passivating the defects. The different kind of strategies such as additive engineering, antisolvent engineering, interfacial engineering, metal doping, surface passivation, ion substitution, gradient thermal annealing etc., [3,10,24–29] have been proposed to reduce the number of defects and development of the efficient PSCs. Among them, due to ease of application, surface passivation is an effective way to suppress the defect density of perovskite film [22].

Various molecules have been introduced to passivate the surface and grain boundary defects. For instance, Lewis acids (phosphoric acid [30], carboxylic acid [31], sulphonic groups [32] and so on) and Lewis bases (pyridine [33], imidazole [22], benzoquinone [34], etc.) were used to suppress uncoordinated Pb$^{2+}$ ions. In addition, halide ion vacancies or halide ions deficiency can be compensated by surface passivation of perovskite film with additional halide based organic/inorganic molecules such as phenylethylium iodide (PEAI), ethylammonium iodide (EAI), phénylcomethylammonium bromide (PEABr), 4-fluorophenylethylammonium iodide (FPEAI), tetramethylammonium halides, tetraalkylammonium iodide (TBAI) [13,29,35–37], cadmium iodide (CdI$_2$) [38], cesium bromide (CsBr) [39], etc. Moreover, pseudohalides such as SCN$^-$ (thiocyanate) [40], P[Br$_4$]$_4$ (hexafluorophosphate) [41] and BF$_4^–$ (tetrabromofluoroborate) [42] with similar ionic radii and chemical properties to iodide were also used to passivate the trap densities. Passivation with fluoride ion-based molecules is an efficient approach to mitigate the traps owing to its higher electronegativity, facilitate strong interaction between lead and fluoride ions [22]. For example, Chen et al. treated CsPb$_2$Br$_3$ perovskite film surface with 4-trifluoromethyl phenethylammonium iodide (CFBA), and suggested that trap densities significantly passivated, leading to high PCE of 16.07% as compared to control PSC (14.50%) [29].

As for the case of organic/inorganic halide salts, Lewis acids/bases, and polymers, they were employed to passivate the perovskite film surface. However, these surface passivators have insulating properties that hamper the efficient charge extraction phenomena at the perovskite/HTL interface owing to their poor electrical conductivity [43]. In addition, researchers have used cadmium based inorganic halide salt (CdI$_2$) [38] as a surface passivator. On the other hand, it has been demonstrated that organic liquids are promising candidates as surface passivation agents owing to their unique properties including high conductivity, low toxicity, wide liquid temperature range, non-volatile, and good stability [44–47]. In this regard, various ionic liquids such as 1-butyl-3,5-dimethylimidazolium tetrafluoroborate (BMMIMBF$_4$), 1-butyl-3-methylimidazolium iodide (BMMI), 1-vinyl-3-propionate ethyl imidazolium chloride ([PEVIM]Cl) etc., effectively passivated the CsPb$_2$Br$_3$ perovskite film surface, resulting in improved device performance and stability [43,44,48]. For example, Xu et al. introduced 1-butyl-3,5-dimethylimidazolium tetrafluoroborate (BMMIMBF$_4$) as a surface passivation agent for CsPb$_2$Br$_3$ perovskite film. They demonstrated that BMMIM$^+$ cation of BMMIMBF$_4$ molecule formed coordinative bond with uncoordinated Pb$^{2+}$ ions, while BF$_4^–$ anion interacted through ionic bond with Pb$^{2+}$/Cs$^+$ ions, mitigating non-radiative recombination [43]. Pu et al. employed 1-vinyl-3-propionate ethyl imidazolium chloride ([PEVIM]Cl) ionic liquid as a surface passivator. This research group suggested that carbonyl group of [PEVIM]Cl molecule interacted uncoordinated metal ions (Cs$^+$ and Pb$^{2+}$) on the perovskite surface. They demonstrated that lone unpaired electron on the oxygen (O) atom donates to the uncoordinated metal, passing surface traps of CsPb$_2$Br$_3$ perovskite film [48]. Thus, ionic liquids efficiently passivated the surface defects (uncoordinated metal ions), resulting in improved film quality. However, imidazolium based ionic liquids have some limitations as it has been demonstrated that long alkyl chains and side methyl groups on imidazolium group induce the steric hindrance effects, resulting in impeding the interaction of nitrogen atoms on imidazolium group with the Cs or Pb$^{2+}$ ion [43]. Therefore, we have chosen 3-(Trifluoromethyl) benzylamine (CF$_3$CH$_2$CH$_2$NH$_2$ (benzylamine), CFBA) as a new surface passivation agent ionic liquid, which is different from the reported ionic liquids.

Motivated by the above studies, we have exploited a novel fluorinated organic compound as 3-(Trifluoromethyl) benzylamine (CF$_3$H$_2$CH$_2$NH$_2$ (benzylamine), CFBA) for surface passivation of CsPb$_2$Br$_3$ perovskite film. A detailed literature survey on surface passivation of CsPb$_2$Br$_3$ perovskite is provided in supporting information (Table S1), to the best of our knowledge for the first time we have introduced CFBA ionic liquid as surface passivating agent to develop high quality CsPb$_2$Br$_3$ perovskite film. We have successfully investigated the effect of CFBA with various concentrations (1, 3 and 5 μL) surface treatment on the crystallinity, microstructure, and optoelectronic properties of the CsPb$_2$Br$_3$ thin films and PSCs. We found that perovskite surface treatment with CFBA significantly passivated defects such as pinholes, voids, and suppressed the uncoordinated Pb$^{2+}$ ions by strong interaction of fluoride ions with Pb$^{2+}$, and hydrogen bonding with anions. We observed that the trifluoro (CF$_3$) and amine (–NH$_2$) groups of CFBA strongly interacted with the perovskite surface via forming Pb–F bond (electrostatic interaction) and hydrogen bonding (H–I), respectively. The interaction of trifluoro (CF$_3$) group with uncoordinated Pb$^{2+}$ ions of perovskite via forming Pb–F bond, passivated the positively charged uncoordinated Pb$^{2+}$ surface defects and amine (–NH$_2$) group interacts with unsaturated I/Br$^-$ ions at perovskite surface through hydrogen bonding (H–I), resulting in suppression of the negatively charged Pb–I anti-site defects (PbI$^-$) and uncoordinated halide (I$^–$/Br$^-$) ions. Thus, the additional amine (–NH$_2$) group further strengthened the interaction of CFBA molecule with perovskite through hydrogen bonding (H–I), effectively passivating the surface defects. The surface treatment of perovskite film with CFBA can also assist the recrystallization that reconstruct the perovskite surface, increasing the crystalline properties of film. As a result, an optimum concentration of CFBA (3 μL) treated PSC reached to an impressive PCE of 17.07% with FF of 83.21% under LED lighting conditions (3200 K, 1000 lx). Thus, the proposed strategy provides a feasible method to produce high-quality all inorganic CsPb$_2$Br$_3$ perovskite films to achieve a high PCE.

Moreover, as we have additionally provided a detailed literature study especially on the development of CsPbBr$_3$ based PSCs using different surface passivation agents (Table S1). From Table S1, it is noteworthy that researchers developed CsPbBr$_3$ based PSCs using a surface passivation strategy under N$_2$ gas/dry air-filled glovebox, which
is not suitable from the commercialization aspect. The large-scale production of inorganic CsPbI$_2$Br PSCs is not feasible through N$_2$ gas filled glovebox process based reported strategies. To address this issue, we have developed an efficient CsPbI$_2$Br based PSC under ambient atmospheric conditions (average relative humidity range of ~32–40%, temperature ~21–24 °C) through surface passivation strategy using CFBA ionic liquid as a surface passivation agent. Even though the ambient air processing for all-inorganic CsPbI$_2$Br PSCs is a harsh condition compared to the N$_2$-filled glove box, the device performance is highly encouraging, as indicated in Table S1.

2. Experimental section

2.1. Materials

Isopropanol (IPA, 99.5%), acetone (99%), ethanolamine (99%), 2-methoxyethanol (2-ME, 99%), dimethylformamide (DMF, 99.5%), and dimethyl sulfoxide (DMSO, 99.8%) were acquired from Samchun Chemical. Tin oxide (SnO$_2$) colloidal solution (15% in H$_2$O) and cerium iodide (CeI, 99.99%) were purchased from Alfa Aesar. Chlorobenzene (CB, 99% GR grade) and Phenyl-C$_6$I$_1$-butyric acid methyl ester (PC$_{61}$BM, 99.5%) were purchased from Organic Semiconductor Materials and Wako Chemicals, respectively. Zinc acetate dihydrate (Zn(CH$_3$CO$_2$)$_2$·2H$_2$O, 99.99%), 3-(Trifluoromethyl)benzylamine (CFBA, 98%), 4-tert-butylpyridine (tBP), and lead bromide (PbBr$_2$, 99.99%) were bought from Sigma Aldrich. Lead iodide (PbI$_2$, 99.99%) was purchased from TCI (Tokyo Chemical Industry Co., Ltd. Tokyo, Japan. Poly (3-hexylthiophene-2,5-diyl) (P3HT) and gold pellets (Au, 99.99%) were used as received without further purification. Indium doped tin oxide (ITO)-coated glass substrates with a sheet resistance of 10 Ω/□ were purchased from AMG, Korea. All the chemicals were used as received without further purification.

2.2. Precursor solution preparation

The SnO$_2$ precursor solution was prepared by adding 0.3 mL SnO$_2$ colloidal solution (15% in H$_2$O) into 2.7 mL deionized water (DI) and then stirred for 12 h at room temperature. The ZnO precursor solution was obtained by mixing 0.2195 g into 2 mL 2-ME and 61.7 mL filtered through 0.2-μm hydrophilic syringe filter (Advantec). For CFBA, the liquid-state CFBA ionic liquid in IPA (2-ME, 99%) was spin-coated onto the ITO substrates at 3000 rpm for 30 s and then sintered at 100°C for 5 min. For SCLC measurement, the electron only devices were prepared by depositing PC$_{61}$BM solution on CFBA treated substrates at 1500 rpm for 30 s and then heated at 70 °C for 10 min. Finally, 80 nm thick gold (Au) metal electrode was deposited by thermal evaporator at ~3.0 × 10$^{-6}$ Torr. The active area of cell is defined as 0.04 cm2 using a shadow mask. Note that α-CsPbI$_2$Br perovskite film and different concentration (1, 3 and 5 μL) CFBA treated perovskite films are referred to as pristine, pristine + 1 μL CFBA, pristine + 3 μLCFBA, and pristine + 5 μL CFBA, respectively. The detailed information of characterization techniques was demonstrated in the supplementary information.

2.3. Fabrication of perovskite solar cells

The procedure for fabrication of PSCs is demonstrated in Fig. S1. In detail, ITO (indium doped tin oxide) coated glass substrates were cleaned sequentially with acetone and isopropanol in ultra-sonication bath for 20 min in each solvent, and then kept for drying in oven at 95 °C for 30 min. The dried substrates were treated with ultraviolet-ozone (UV-O$_3$) for 20 min to increase the wettability and remove organic impurities if present at the surface. The SnO$_2$ precursor solution was spin-coated onto the ITO substrates at 1000 rpm for 0.5 s and 3000 rpm for 30 s successively, and then annealed at 150 °C for 30 min. Then, ZnO precursor solution was deposited onto the SnO$_2$/ITO substrates with continuous spinning speed of 1000 rpm and 5000 rpm for 0.5 s and 30 s, respectively, and then heated at 170 °C for 30 min. Afterward, CsPbI$_2$Br perovskite precursor was spin-coated at 3000 rpm for 40 s on top of ZnO/ITO substrates. During spin coating of perovskite solution from 8 to 22 s, dynamic hot air (230 °C) was blown using dynamic hot air gun (BOSCH, GHG 630 DCE Hot Air Gun – 0601 94C 740) onto the substrates to stimulate the nucleation of perovskite crystal. After completing the spin coating process, substrates were immediately annealed at 240 °C for 10 min. The procedure of dynamic hot air method (in detail) was mentioned in the supplementary information (Fig. S2 and Fig. S3(a)). To obtain CFBA treated perovskite film, CFBA solution was spun coated on top of perovskite/ZnO/ITO substrates at 3000 rpm for 30 s, and then annealed at 100 °C for 5 min (Fig. S3(b)). Subsequently, P3HT solution was coated on the CFBA treated substrates at 3000 rpm for 30 s and then sintered at 100°C for 5 min. For SCLC measurement, the electron only devices were prepared by depositing PC$_{61}$BM solution on CFBA treated substrates at 1500 rpm for 30 s and then heated at 70 °C for 10 min. Finally, 80 nm thick gold (Au) metal electrode was deposited by thermal evaporator at ~3.0 × 10$^{-6}$ Torr. The active area of cell is defined as 0.04 cm2 using a shadow mask. Note that α-CsPbI$_2$Br perovskite film and different concentration (1, 3 and 5 μL) CFBA treated perovskite films are referred to as pristine, pristine + 1 μL CFBA, pristine + 3 μLCFBA, and pristine + 5 μL CFBA, respectively. The detailed information of characterization techniques was demonstrated in the supplementary information.

3. Results and discussion

We have developed high quality α-CsPbI$_2$Br perovskite thin film under ambient conditions (average relative humidity range of ~32–40%, temperature ~21 – 24 °C) using surface passivation strategy. In this approach, pristine α-CsPbI$_2$Br perovskite film surface was treated with various concentrations (1, 3, and 5 μL) of CFBA ionic liquid in IPA solutions. To examine the interaction of CFBA with pristine perovskite film, we performed FTIR and liquid-state 13C NMR measurements, obtained patterns were presented in Fig. 1(a) and Fig. 1(b), respectively. The FTIR spectrum of CFBA molecule showed a dominant peak as appeared at 1327 cm$^{-1}$, confirmed the existence of -CF$_2$ bond [49]. In addition, the CFBA FTIR pattern showed the peaks at ~1507 cm$^{-1}$ and ~1558 cm$^{-1}$, representing the presence of C=C stretching vibration (from benzene ring) [50,51] and N–H bending (from amine group) [52], respectively.

The FTIR pattern of inorganic α-CsPbI$_2$Br pristine film is well consistent with reported works [53-55]. Compared to pristine thin film, 3 μL CFBA treated perovskite film showed additional characteristic peaks as centered at ~1330 cm$^{-1}$, ~1507 cm$^{-1}$ and ~1559 cm$^{-1}$, which can be assigned to -CF$_2$ bond (Fig. 1(a) and Fig. S4(a)), -NH bending (Fig. 1(a) and Fig. S4(b)), and C=C stretching vibration (Fig. 1(a) and Fig. S4(c)), respectively, confirming the existence of CFBA molecule in the resulting perovskite film (CFBA treated CsPbI$_2$Br perovskite). It is noteworthy that a slight shift was observed in peaks of -CF$_3$ group (Fig. S4(a)) and N–H bending (Fig. S4(b)) towards the lower wavenumber, confirming that highly electronegative fluoride ions as associated with -CF$_3$ group interacted with uncoordinated Pb$^+$ ions of perovskite through coulombic/electrostatic interaction (by forming Pb-F bond) and hydrogen of amine group (-NH$_2$) interacted with halide (iodide/bromide) ions of perovskite through hydrogen bonding (-N–H……I/Br), respectively. Thus, FTIR analysis clearly suggested an interaction of CFBA molecule with pristine (CsPbI$_2$Br) perovskite film. The liquid-state 13C NMR measurement for neat CFBA and CFBA-PbI$_2$ was performed in deuterated DMSO-d_6 (Fig. 1(b)). The simulated 13C NMR pattern of neat CFBA organic molecule was depicted in Fig. S5, in which resonance signals related to each carbon position of CFBA were demonstrated. The experimental 13C NMR spectrum of neat CFBA molecule displayed a resonance signal at ~125.35 ppm corresponding to the carbon position as associated with fluoride ions (Fig. 1(b)). After
Fig. 1. (a) FTIR of CFBA molecule, pristine and pristine + 3 μL CFBA perovskite films; (b) 13C NMR of CFBA and CFBA + PbI$_2$; (c) Enlarged 13C NMR spectrum of carbon linked with -CF$_3$ group from 125.2 to 125.5 chemical shift (ppm), (d) Enlarged 13C NMR spectra of carbon associated with amine group ($-$NH$_2$) from 44.5 to 45.5 chemical shift (ppm).

Fig. 2. FESEM top view of (a) pristine and, (b) pristine + 3 μL CFBA perovskite films; (c) XRD patterns of ITO substrates, pristine and pristine + 3 μL CFBA perovskite films; (d) Calculated FWHM, average crystallite size, strain, and dislocation density, (e) UV–visible patterns and steady-state photoluminescence spectra, and (f) Time-resolved photoluminescence spectrums for pristine and pristine + 3 μL CFBA perovskite films.
addition of PbI$_2$, carbon position of -CF$_3$ group of CFBA molecule was shifted towards lower value of ppm as shown in enlarged spectrum (Fig. 1(c)), it signifies stronger interaction between CsPbI$_2$Br and CFBA molecule through Pb-F bonding. The highly electronegative three fluoro-ride ions as linked with -CF$_3$ group permit coulombic interaction with uncoordinated PbF$^+$ ions, resulting suppressed PbF$^+$ dangling bond defects. Moreover, as shown in Fig. 1 (d) (13C NMR enlarged spectrum), carbon position as connected with –NH$_2$ group shifted towards lower ppm value, also indicating interaction of CFBA molecule with perovskite surface via H-I bonding. The interaction of –NH$_2$ amine group with unsaturated halide ions (I/Br) through hydrogen bonding passivating the negatively charged Pb-I anti-site defects (PbI$_2$) and uncoordinated halide (I-/Br-) ions.

To investigate the top surface morphology of without and with CFBA treated perovskite films, FE-SEM measurement was conducted. The captured top-view scanning SEM images of pristine and different concentration of CFBA (1, 3 and 5 μL) treated perovskite films were depicted in Fig. 2(a, b) and Fig. S6 (a, b). The pristine perovskite film (Fig. 2(a)) demonstrated poor morphology with pinholes, voids, rough and non-uniform surface, which might serve as non-radiation recombination centers. When pristine perovskite film surface was treated with 1 μL CFBA solution, film morphology improved, however, still minor rough surface observed in the film (Fig. S6(a)). Interestingly, as concentration of CFBA treatment increased from 1 to 3 μL, pinholes significantly suppressed, uniform and compact morphology were obtained (Fig. 2 (b)). This modulation in morphology indicates that CFBA treatment effectively reconstructed the perovskite surface owing to strong interaction between Pb-X framework and CFBA molecule by forming bond between uncoordinated PbF$^+$ ions (electron-deficient) and F ions (electron rich) (Pb-F), and hydrogen bonding (H-I), resulting improved film quality [29,43]. After CFBA deposition, the post annealing process (100 °C @5min) would facilitate the secondary crystallization at the top surface, and interaction of CFBA molecule through Pb-F and H-I bonding with perovskite mitigated the surface perovskite defects, results in reconstructing the perovskite surface. It has been explored that deposited organic molecules on the perovskite surface promotes secondary crystallization of perovskite during thermal annealing process, leading to compact perovskite morphology [56,57]. Moreover, it has also been demonstrated that the surface passivation strategy with organic molecules reconstruct the perovskite surface, resulting in formation of the compact perovskite film [58]. However, when further increased concentration of CFBA to 5 μL, surface morphology of film was degraded (Fig. S6(b)). Obviously, a slight change in topography of 5 μL CFBA assisted perovskite film as compared to the optimized (3 μL) sample was observed, which might be due to excess CFBA concentration. An excess concentration of CFBA contains large number of highly electronegative fluoride ions that would repel the existent halide (I/Br) ions (in lattice [PbX$_6$]$^{4+}$ octahedron) at perovskite surface due to same polarity of charges as shown in schematic diagram (Fig. S7). It results in distortion of the [PbX$_6$]$^{4+}$ octahedron of crystal structure. Thus, we speculate that large number of high-electronegative fluoride ions with excess concentration of CFBA may induce lattice strain in the perovskite crystal by disturbing the existent Pb-X bonds in the [PbX$_6$]$^{4+}$ octahedron of crystal structure, which might degrade also the surface morphology of film. Thus, an optimum concentration of CFBA (3 μL) treatment showed favorable impact on the surface morphology.

To examine the influence of CFBA molecule on the crystallinity of pristine and CFBA treated perovskite film, XRD patterns were recorded as shown in Fig. 2(c) and Fig. S8(a-b). The pristine film exhibited distinctive peaks at 14.80 (100), 21.04 (1 1 0), and 29.69 (200), confirmed the formation of α-phase CsPbI$_2$Br [17,39,59]. After 3 μL CFBA surface treatment, characteristic peaks were obtained at almost the same value of 2θ, indicating CFBA molecule does not enter into the crystal lattice. Noticeably, diffraction peaks ([1 1 0] and [2 0 0]) intensities significantly enhanced in case of 3 μL CFBA treated perovskite film. The individual peak intensity ratio like I$_{200}(3 \mu$L-CFBA)/I$_{100}(\text{pristine})$ and I$_{200}(3 \mu$L-CFBA)/I$_{100}(\text{pristine})$ were found to be 1.23 and 1.30, respectively (Fig. 2(c)), reveals crystallinity of 3 μL-CFBA assisted perovskite film remarkably increased as compared to pristine. Notably, CFBA treated perovskite film showed higher crystallinity than pristine one. It is mainly attributed to secondary crystallization at the top of perovskite surface. The annealing process (100°C for 5 min) after CFBA treatment would facilitate the secondary crystallization at the top surface, resulting in improved the film crystallinity. However, when concentration of CFBA increased to 5 μL, diffraction peaks (100) and (200)) intensity reduced as compared to pristine + 3 μL CFBA perovskite film, which indicates that film quality was degraded with excess concentration of CFBA, and consistent with FESEM results. Moreover, pristine + 5 μL CFBA perovskite film exhibited a noticeable peak shift towards lower angle as displayed in Fig. S6(b), indicating lattice expansion [14,60]. This phenomenon could be ascribed to the excess fluoride ions (highly electronegative) that can induce tensile strain by repelling existent halide ions (I/Br) (in lattice [PbX$_6$]$^{4+}$ octahedron) at the perovskite surface due to same polarity of charges, disturbing the Pb-X bond in [PbX$_6$]$^{4+}$ octahedron of crystal structure (as shown in Fig. S7). Thus, excess concentration of CFBA might cause a distortion in crystal lattice structure of perovskite, leading to defective surface morphology. Moreover, the average crystallite size, full width at half maxima (FWHM), strain and dislocation density were determined (Fig. 2(d)) for detailed analysis. The average crystallite size was calculated using Debye-Scherrer formula (eq.1) as following [61,62]:

\[
\beta \cos \theta = \frac{k \lambda}{D} + 4 \sin \theta
\]

where, D is average crystallite size (nm), k is shape factor (0.9), λ is wavelength of X-ray (Cu-Kα radiation, 1.54 Å), β is FWHM (°) and θ is diffraction angle (°). According to the Williamson-Hall equation (eq. (2), micro-strain and average crystallite size are correlated as [61]:

\[
\varepsilon = \frac{\beta \cos \theta}{4 \Delta \theta}
\]

Therefore, micro-strain can be expressed as [63]:

\[
\varepsilon = \frac{\beta \cos \theta}{4 \Delta \theta}
\]

where, ε, β and Δθ are the micro-strain, FWHM (°) and diffraction angle (°), respectively.

Moreover, dislocation density can be obtained by following equation [64]:

\[
\delta = \frac{n}{D^2}
\]

where, δ is dislocation density, and n is a factor, the value of n is almost one for minimal dislocation density.

The eq.1, eq.3 and eq.4 were used to estimate the average crystallite size, micro-strain, and dislocation density, respectively and obtained crystalline parameters were depicted in Table S2 and as well as in shown in Fig. 2(d). After 3 μL CFBA treatment, value of FWHM decreased and average crystallite size increased, indicating that crystalline property of film ameliorated [65]. Generally, micro-strain within the nanocrystalline materials as well as in thin films induce owing to presence of various defects like point defects (site disorder, vacancies), crystal imperfections, and dislocations [61]. Noteworthy, micro-strain and dislocation density decreased after surface modification with 3 μL CFBA, suggesting that defects considerably reduced. These results showed a better interaction of 3 μL CFBA ionic molecule with pristine perovskite, resulting in improved film quality.

To figure out the influence of CFBA treatment on optoelectronic properties of CsPbI$_2$Br thin film, UV-visible measurement performed and obtained patterns were shown in Fig. 2(e). Notably, CFBA treated perovskite film exhibits slightly higher absorption than pristine film,
revealing film quality improved [66], and defects like band-edge trap states, are considerably reduced [8]. Moreover, enhancement in crystallinity and surface coverage of film is beneficial to increase the light absorbance [17,67]. From Fig. 59 (Tauc plots), both perovskite films showed nearly identical optical band edge of ~ 1.88 eV, which is well consistent with reported works [8,19,68].

To explore the charge carrier dynamics of pristine and CFBA treated perovskite films, steady-state photoluminescence (PL) and time-resolved photoluminescence (TR-PL) spectrums were recorded as depicted in Fig. 2(e) and Fig. 2(f), respectively. As compared to pristine film, CFBA treated perovskite film shows high PL intensity (Fig. 2(e)), manifesting that spontaneous non-radiative recombination remarkably was suppressed owing to passivation of surface defects [17,66,69,70]. The TRPL curves were fitted using a bi-exponential decay function of time as following [8,71]:

$$F(t) = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right)$$

(5)

where, short lifetime (τ_1) represents the surface (non-radiative) recombination that originates from the surface traps near the grain boundaries, long lifetime (τ_2) indicates the bulk (radiative) recombination in the bulk film; A_1 and, A_2 are the associated amplitudes. The fitted decay parameters corresponding to pristine and CFBA treated perovskite films were demonstrated in Table S3. Interestingly, after CFBA treatment, the values of τ_1 and τ_2 lifetimes are prolonged from 24.17 to 29.53 ns and from 47.10 to 59.86 ns, respectively, confirmed that both surface and bulk recombination suppressed owing to improvement in crystallinity and film morphology. Moreover, the average carrier lifetime (τ_{avg}) was obtained using following equation [17]:

$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

(6)

From eq. (6), the value of τ_{avg} corresponding to pristine and CFBA treated perovskite films were calculated to be 44 ns and 54 ns (Table S3), respectively. Notably, CFBA assisted perovskite film showed longer carrier lifetime as compared to pristine, which also confirms that trap-assisted recombination significantly diminished with CFBA treatment.

To identify the impact of CFBA treatment on photovoltaic performance, we fabricated PSCs with n-i-p (ITO/SnO$_2$/ZnO/perovskite/P3HT/Au) configuration as depicted in schematic diagram (Fig. 3(a)). The measured current density–voltage (J–V) characteristics of pristine and different concentration of CFBA based PSCs were demonstrated in Fig. 3(b) and Fig. S10. The obtained photovoltaic (PV) parameters corresponding to without and with various concentration of CFBA assisted PSCs were listed in Table 1 and Table S4. The pristine device exhibited a PCE of 15.24% with current density (J_{sc}) of 15.83 mA/cm2, open circuit voltage (V_{oc}) of 1206 mV and fill factor (FF) of 79.81%. After 1 μL CFBA treatment, PSC showed an improvement in PV parameters like PCE of 16.36% with J_{sc} of 15.94 mA/cm2, V_{oc} of 1245 mV and FF of 82.40%. When concentration of CFBA increase to 3 μL, device PV parameters

Fig. 3. (a) Schematic representation of fabricated PSC with n-i-p structure; (b) Current density–voltage curves, (c) EQE and integrated current density–voltage spectrums, (d) PCEs histogram for pristine and 3 μL CFBA assisted PSCs; (e) Dark current density–voltage patterns of pristine and 3 μL CFBA assisted based PSCs; Calculated ideal factor for (f) pristine and (g) 3 μL treated PSCs; Space charge-limited current spectra for (h) Pristine PSC, and (i) 3 μL CFBA treated PSC.
further increased as PCE of 17.07% with \(J_{sc} \) of 16.35 mA/cm\(^2\), \(V_{oc} \) of 1255 mV, and FF of 83.21%. Such considerable increment in PV parameters attributed to reduced trap-assisted recombination, enhanced crystallinity, improved surface morphology of perovskite film after surface treatment with 3 \(\mu \)L CFBA. However, when further CFBA concentration increased to 5 \(\mu \)L, a reverse trend was observed, and device PV parameters decreased as PCE of 16.36% with \(J_{sc} \) of 15.94 mA/cm\(^2\), \(V_{oc} \) of 1245 mV and FF of 82.40%, might be due to excess concentration that degraded the film morphology (Fig. S6(b)). Thus, 3 \(\mu \)L CFBA assisted PSC exhibited an impressive PCE of 17.07%, considered to be a champion device, and as per the systematic literature study (Table S5), obtained champion PCE (17.07%) is one of high performance in case of inorganic pristine PSCs. In addition, we recorded external quantum efficiency (EQE) patterns of pristine and 3 \(\mu \)L CFBA treated PSCs as depicted in Fig. 3(c). In comparison to pristine PSC, 3 \(\mu \)L CFBA assisted device exhibited higher EQE value, might be due to suppressed charge carrier recombination, higher light absorbance, and improved film quality. From EQE spectrums, the integrated \(J_{sc} \) was calculated to be 15.81 mA/cm\(^2\) (pristine) and 16.34 mA/cm\(^2\) (3 \(\mu \)L CFBA), which is well consistent with J-V characteristics values. To confirm the reproducibility, we constructed 25 individual devices of both cases (pristine and 3 \(\mu \)L CFBA) and obtained PCEs displayed in Fig. 3(d) (histogram). The 3 \(\mu \)L CFBA assisted PSCs showed narrow PCE distribution as compared to pristine devices, elucidating the good reproducibility.

To evaluate the leakage current in the fabricated PSCs, dark current–voltage measurement was performed for with and without CFBA treated devices. As shown in Fig. 3(e), 3 \(\mu \)L CFBA assisted PSC exhibited lower value of dark current as compared to pristine device, implies that leakage current reduced after CFBA treatment. A decrement in leakage current indicates defective pinholes and grain boundary traps significantly diminished [44,72,73]. The Shockley diode equation as mentioned below [74,75]:

\[
J_{dark} = J_0 \exp \left(\frac{qV}{nKT} \right) - 1
\]

where, \(J_{dark} \) is the dark current density, \(J_0 \) is the reverse saturation current, \(q \) is elementary charge, \(V \) is applied voltage, \(n \) is ideal factor, \(K_B \) is Boltzmann constant, and \(T \) is an absolute temperature. Ideally, the value of \(n \) should approach to unity in the absence of charge recombination [75]. The ideal factor \(n \) can be determined from slope of exponential behavior regime as displayed in Fig. 3(e). The value of \(n \) calculated to be 1.99 and 1.74 corresponding to pristine and 3 \(\mu \)L CFBA assisted PSCs (Fig. 3(f, g)), respectively. The decreased ideal factor value with 3 \(\mu \)L CFBA treatment indicates a better diode junction quality, due to reduced non-radiative recombination [44,76]. According to the following equation [17,77], \(V_{oc} \) is strongly dependent on logarithmic ratio of \(J_{sc} \) and \(J_{dark} \):

\[
V_{oc} = \frac{K_B T}{q} \ln \left(\frac{J_{sc}}{J_{dark}} \right)
\]

where \(V_{oc} \), \(K_B \), \(T \), \(q \), \(J_{sc} \) and \(J_{dark} \) are the open circuit voltage, Boltzmann constant, absolute Kelvin temperature, electronic charge, short circuit current density, and dark current density, respectively. As compared to pristine device, CFBA assisted PSC showed improvement in \(J_{sc} \) and reduction in \(J_{dark} \) that leading to high \(V_{oc} \) of 1255 mV, suggesting trap-assisted charge carrier recombination significantly decreased.

To quantify the trap-assisted defect density, space charge limited current (SCLC) measurement was conducted by fabricating electron-only-devices (ITO/SnO\(_2\)/ZnO/perovskite/PCBM/Au) and recorded dark current–voltage curves displayed in Fig. 3(h, i) for pristine and 3 \(\mu \)L CFBA based devices, respectively. From obtained patterns, trap filled limited voltage (\(V_{TFL} \)) can be extracted at the kink point, which signifies the transition of curve from ohmic to trap-filled limited region (as showing in Fig. 3(h, i)) [3]. The value of \(V_{TFL} \) corresponds to pristine and 3 \(\mu \)L CFBA assisted devices were found to be 1.16 V and 0.95 V, respectively. The trap density can be estimated by using following formula [8,78]:

\[
n_t = \frac{2eV_{TFL}}{qL^2}
\]

where \(n_t \), \(e \), \(V_{TFL} \), \(e \), and \(L \) are the trap state density, relative dielectric constant (for CsPbI\(_2\)Br is 8.5) [8], vacuum permittivity, trap filled limited voltage, elementary charge, and thickness of perovskite film, respectively. According to eq. (9), trap-state density directly proportional to the trap filled limited voltage. Thus, electron trap-state densities were calculated to be 7.96 \(\times \) 10\(^{15} \) cm\(^{-3} \) and 6.52 \(\times \) 10\(^{15} \) cm\(^{-3} \) for pristine and 3 \(\mu \)L CFBA treated-devices, respectively. The decreased trap-state density suggesting that perovskite surface effectively passivated after 3 \(\mu \)L CFBA modification, resulting in defects remarkably suppressed, which is conductive to reduce the energy losses. According to the formula as following [79]:

\[
E_{loss} = E_F - eV_{oc}
\]

Where \(E_{loss} \), \(E_F \), \(e \), and \(V_{oc} \) indicate energy loss, optical band edge, electronic charge, and open circuit voltage. From eq. (10), calculated energy losses corresponding to pristine and 3 \(\mu \)L CFBA based PSCs were demonstrated in Fig. S11. Noteworthy, energy loss decreased after 3 \(\mu \)L CFBA treatment due to improved film quality.

To evaluate the charge carrier recombination dynamics, electrochemical impedance spectroscopy (EIS) measurement was performed under dark conditions. The EIS curves were recorded at a bias voltage of 1.0 V with frequency range of 100 Hz to 2 MHz corresponding to pristine and 3 \(\mu \)L CFBA based PSCs. As shown in Fig. 4(a), the EIS patterns were fitted using Z-view software according to the equivalent circuit diagram (insert of Fig. 4(a)), which consists of series resistance (\(R_s \)), recombination resistance (\(R_{rec} \)), and chemical capacitance (\(C \)) [80,81]. From Nyquist plots (Fig. 4(a)), the values of \(R_s \) and \(R_{rec} \) can be obtained corresponding to intercept on the Z(\(\omega \)) axis at a high frequency and diameter of semicircle, respectively [69,82]. In general, \(R_s \) induces in the PSCs from different factors like, ITO electrode interface, metal electrode interface and metal wires [83,84], while \(R_{rec} \) originates from recombination centers at ETL/perovskite interface [85,86]. The extracted Nyquist parameters were demonstrated in Table S6. The value of \(R_s \) is almost similar for with and without CFBA treated PSCs owing to same device architecture [81]. However, it is worth to note that 3 \(\mu \)L CFBA assisted device exhibited higher \(R_{rec} \) value of 5042 \(\Omega \) as compared to pristine PSC (3117 \(\Omega \), indicating surface non-radiative recombination sites effectively suppressed after CFBA modification [8,87], which is consistent with SCLC findings.

Further to probe the charge carrier transportation and recombination dynamics, the transient photocurrent (TPC) and transient photovoltage (TPV) decays were measured as depicted in Fig. 4(b) and Fig. 4(c), respectively. From Fig. 4(b), charge carrier transport lifetime (\(\tau_{ct} \)) was estimated to be 0.75 \(\mu \)s and 1.04 \(\mu \)s corresponding to with and without CFBA treated devices, respectively. As a result, 3 \(\mu \)L CFBA based PSC showed fast decay as compared to pristine device (Fig. 4(b)), confirms the efficient extraction and transportation of photo-generated charge carriers [54]. The enhancement in charge extraction and transport properties is mainly owing to construction of high-quality perovskite film with 3 \(\mu \)L CFBA modification. From TPV decays (Fig. 4(c)), charge carrier recombination lifetime (\(\tau_{rec} \)) was calculated to be 1.54 \(\mu \)s and 4.84 \(\mu \)s for pristine and 3 \(\mu \)L CFBA assisted PSCs, respectively. Notably,
from the two devices after 3 μL CFBA treatment, value of V_{oc} elongated from 1.54 to 4.84 μs, manifesting that trap-assisted defect states substantially suppressed [17], which is in good agreement with EIS and TRPL results. Therefore, 3 μL CFBA treated device exhibited better extraction and transportation phenomena, inhibited nonradiative-recombination, and decreased energy losses, resulting in higher V_{oc} and FF.

In the current scenario, energy generation under low light conditions is a key component of social development. The indoor PSCs can be considered as efficient power sources under dim light conditions to meet the energy requirements to the fast-growing fields (internet-of-things (IoTs)) based applications [88,89]. Consequently, we investigated the indoor current density–voltage (J-V) curves of pristine and 3 μL CFBA based PSCs displayed in Fig. 4(d), and corresponding indoor PV parameters were shown in Table 2. The input power density of 382 μW/cm² for white LED (3200 K, 1000 lx) was used to determine the indoor PCE. The pristine device showed a power density of 70.10 μW/cm² with PCE of 18.35%, J_{sc} of 104 μA/cm², V_{oc} of 955 mV and FF of 70.59%. After 3 μL CFBA modification, PSC exhibited a power density of 88.77 μW/cm² with PCE of 23.24%, J_{sc} of 110 μA/cm², V_{oc} of 1051 mV and FF of 76.79%. The notable increment in indoor PV parameters also suggesting that trap-assisted non-radiative recombination effectively reduced due to enhanced crystallinity and improved film coverage with 3 μL CFBA treatment. In comparison to 1-sun PCE, PSCs show high PCE under indoor (LED) lighting condition.

Furthermore, to explain the cause of improvement in thermal stability, we investigated the hydrophobicity of perovskite film with and without 3 μL CFBA treatment. In comparison to 1-sun PCE, PSCs show high PCE under indoor (LED) lighting conditions owing to the narrower spectral band that reduces thermalization losses and transparency losses as associated with broadband solar spectrum (1-Sun) [90,91]. From these reasons, generally, the indoor PCE value is higher than the one measured under 1-sun lighting condition.

From commercialization aspect, optimized PSC can be enabled to power different electronic portable devices like calculator, wrist watches, quartz oscillator, radio frequency identification (RFID), LoRa Backscatters, low powered based sensors, etc. as shown in schematic diagram (Fig. S12) [92–94].

To monitor the long-term thermal stability of constructed PSCs, an aging test was performed over 1440 h at 85 °C in dry box (relative humidity range of 10–20%, temperature of 24 – 27 °C) without any encapsulation of PSCs. As displayed in Fig. 5(a), 3 μL CFBA treated device retained ~ 86.23% of its original PCE, whereas pristine PSC maintained ~ 48.26% of its initial PCE after tracking of 1440 h at 85 °C in dry box. It is noteworthy that the optimized PSC exhibited superior long-term thermal stability as compared to pristine device, which is mainly attributed to decreased pinholes, uniformity, dense morphology, good crystallinity, and effective surface defect passivation after 3 μL CFBA modification that stabilize the PCE under thermal stress. Furthermore, to explain the cause of improvement in thermal stability, we investigated the hydrophobicity of perovskite film with and without 3 μL CFBA treatment by measuring the contact angles with deionized water as shown in Fig. 5(b). The contact angle (CA) was estimated to be 46.10 and 62.90 related to the pristine and 3 μL CFBA assisted perovskite films, respectively. As compared to pristine film, 3 μL CFBA treated perovskite film exhibited higher contact angle, indicating that increased hydrophobic nature of perovskite film protected from moisture content, resulting in enhanced thermal stability of the optimized PSCs [29].

Based on the above findings, the key role of CFBA ionic liquid is shown in the schematic diagram (Fig. 5(C)). The CFBA ionic liquid
adsorbs on the perovskite surface via coulombic interaction (Pb-F) and hydrogen bonding (H-I). Fluoride ions (F\(^{-}\)) as associated with CFBA ionic molecule forms strong bonding with uncoordinated lead (Pb\(^{2+}\)) ions due to high electronegativity. The interaction of electron withdrawing -CF\(_3\) functional group with uncoordinated Pb site is beneficial in many aspects such as to passivate uncoordinated surface Pb\(^{2+}\) ions, suppress halide ion vacancies, improve the hydrophobicity of perovskite surface. Thus, surface treatment with CFBA ionic liquid effectively reduced the pinholes, enhanced the crystallinity, improved surface coverage and compactness, passivated dangling bonds, produced dense morphology, prolonged carrier lifetime, improved hydrophobicity, and remarkably reduced trap-assisted recombination, resulting in enhanced device PCE. Interestingly, the optimized CFBA concentration (3 \(\mu\)L) based device exhibited a noticeable PCE of 17.07%, which is higher than the pristine PSC (15.24%). Moreover, champion device maintained ~ 86.23% of its original PCE, whereas pristine PSC showed 48.26% retention of its initial PCE after monitoring 1400 h at 85 °C in dry box. In addition, we also examined indoor photovoltaic performance with and without CFBA treatment-based PSCs under LED lighting conditions (3200 K) at 1000 lx. As a result, indoor PCE related to pristine and 3 \(\mu\)L treated PSCs was found to be 23.24% and 18.35%, respectively. Notably, optimized PSC showed a high indoor PCE than pristine device, owing to formation of high-quality perovskite film after 3 \(\mu\)L CFBA modification. Our finding suggested that CFBA ionic liquid plays multi-functional roles to strongly mitigate the surface defects, leading to the high device PCE as well as remarkable stability. Therefore, present work provides a novel way to produce a high quality α-CsPbI\(_2\)Br perovskite film, which will further promote the design of efficient and stable all-inorganic PSCs under outdoor/indoor lighting conditions.

CRediT authorship contribution statement

Jitendra Bahadur: Conceptualization, Methodology, Investigation, Validation, Data curation, Visualization, Formal analysis, Writing – original draft. SungWon Cho: Data curation, Visualization, Formal analysis. Padmini Pandey: Data curation, Investigation, Validation, Visualization, Formal analysis. Jun Ryu: Data curation, Visualization, Formal analysis. Saemon Yoon: Data curation, Visualization, Formal analysis. Dong-Gun Lee: Data curation, Visualization, Formal analysis. Jun Tae Song: Data curation, Visualization, Formal analysis. Jung Sang Cho: Conceptualization. Dong-Won Kang: Writing – review & editing, Conceptualization, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[17] X. Liu, J. Wu, Y. Yang, D. Wang, G. Li, X. Wang, X. Sun, Y. Wei, Y. Huang, M. Huang, Additive engineering by bifunctional guanidine sulfamate for highly efficient and stable perovskite solar cells, Small 16 (2020) 2004677.

X. Pu, J. Han, S. Wang, H. Zhou, Q. Cao, J. Yang, Z. He, X. Li, Surface modification of ionic liquid for effective CsPbBr\textsubscript{3} perovskite solar cells, J. Mater. Chem. A 7 (2019) 2001684.

K. Wei, L. Yang, J. Deng, J. Zhang, Facile Exfoliation of the 2D layered transition metal dichalcogenide (MoSe\textsubscript{2}) for high-performance semitransparent CsPbI\textsubscript{2-x}Br\textsubscript{x} solar cells, Adv. Funct. Mater. 29 (2019) 1901852.

J.V. Patil, S.S. Mali, C.K. Hong, Reducing Defects of All-Inorganic CsPbI\textsubscript{2-x}Br\textsubscript{x} Perovskite Solar Cells, Sol. RRL 4 (2020) 2000268.

W. Fu, E. Li, Y. Fan, Enhanced Performance of Inorganic CsPbI\textsubscript{2-x}Br\textsubscript{x} Perovskite solar cells exceeding 17% efficiency, Sol. RRL 4 (2020) 2000164.

G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of Cs\textsubscript{0.05}Na\textsubscript{0.95}PbI\textsubscript{3} films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells, J. Mater. Chem. A 2 (2014) 705–710.

